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LES on unstructured deforming meshes:
towards reciprocating IC engines

By D. C. Haworth 1 AND K. Jansen 2

A variable explicit/implicit characteristics-based advection scheme that is second-

order accurate in space and time has been developed recently for unstructured

deforming meshes (O'Rourke & Sahota 1996a). To explore the suitability of this

methodology for large-eddy simulation (LES), three subgrid-scale turbulence inod-

els have been implemented in the CHAD CFD code (O'Rourke & Sahota 1996b):

a constant-coefficient Smagorinsky model, a dynamic Smagorinsky model for flows

having one or more directions of statistical homogeneity, and a Lagrangian dynanfic

Smagorinsky model for flows having no spatial or temporal homogeneity (Meneveau

et al. 1996). Computations have been made for three canonical flows, progressing

towards the intended application of in-cylinder flow in a reciprocating engine. Grid

sizes were selected to be comparable to the coarsest meshes used in earlier spectral

LES studies. Quantitative results are reported for decaying homogeneous isotropic

turbulence, for linear (non-solenoidal) strain of homogeneous isotropic turbulence,

and for a planar channel flow. Computations are compared to experimental mea-

surements, to direct-numerical simulation (DNS) data, and to rapid-distortion the-

ory (RDT) where appropriate. Generally satisfactory evolution of first and second

moments is found on these coarse meshes; deviations are attributed to insufficient

mesh resolution. Issues include mesh resolution and computational requirements

for a specified level of accuracy, analytic characterization of the filtering implied by

the numerical method, wall treatment, and inflow boundary conditions. To resolve

these issues, finer-mesh simulations and computations of a simplified axisymmetric

reciprocating piston-cylinder assembly are in progress.

1. Introduction

Contemporary three-dimensional time-dependent models for flow and combustion

in reciprocating IC engines are based on solutions to Reynolds-averaged governing

equations ('RANS' based modeling; Amsden et al. 1989, Haworth ctal. 1990). In

RANS, the local instantaneous value of a computed dependent variable represents

an ensemble- or phase-average over many engine cycles at a specified spatial loca-

tion and crank phasing. In general, two-equation (k - e) closures have been used

to model turbulent transport, with standard equilibrium wall functions. Shortcom-

ings of RAN$ models have been documented by several generations of turbulence
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researchers. Discussi(m of engine-specific issues can 1)(' f()und in the reviews by E1

Tahry & Haworth (1992, 1996).

An alternative to RANS is large-eddy simulation (LES). Here the governing equa-

tions arc spatially filtered rather than ensemble averaged. Explicit account is taken

of flow structures larger than the filter width, which is on the order of the mesh

spacing, while the influence of unresolved scales is modeled using a subgrid-scale

(SGS) model. Because statistics of small-scale turbulence are expected to be more

universal than those of the large scales, LES offers th(, t)roxnise of wider generality

and reduced modeling uncertainty.

LES is particularly appealing for IC engine applications. Turbulence model for-

mulation and calil)rat.i(m traditionally have been carried out in statistically station-

ary and/or homogelleous flows for simt)le geolnetric configurations. To bring these

nlodels to bear in a phase-averaged formulation implies an equivalence between

ensemMe- and spatial- ()r temporal-averages (ergodicity) that has been demon-

st.rated neither experimentally nor analytically. Use of conventional models also

demands a reasonal)le degree of commonality in turbulence structure between the

benchmark flow and the engine. While universality has been argued in the limit

of fully-developed high-Reynolds-number broad-inertial-range turbulence, it is du-

bious for the low Reynolds numbers (Section 4) and colnplex three-dimensional

transient flows that characterize the engine.

The same moderate Reynolds nmnbers that make IC engine flow problematic

for RANS render it an appealing candidate for LES. It has been estimated that

grid-iildependent (to a 10%-20% level) R ANS computations of in-cylinder flow an(t

combustion r('quire at. least 100 a mesh points using second-order or higher numerical

methods. This corresponds to sub-nlillimeter mesh si)acings ill a typical automotive

IC engine, and is not fat' beyond current practice (Jr 250,000 to 500,000 nodes. This

mesh density should suffice to capture large- and intermediate-scale flow structures.

Thus for IC engines, LES mesh requirements are exI)ected to be comparable to
those of RANS.

LES also t)romises more direct access to physical processes. Cycle-to-cycle vari-

ability in flow and combustion is one l)henomenon that has proven elusive to ensemble-

mean modeling and analysis. The result has been a number of largely ad hoc

attempts to distinguish among 'mean,' 'turbulence,' and 'cyclic varial)ility' conlpo-

nents of the fl()w (El Tahry & Haworth 1992). This distinction becomes moot in a

spatially-filtered formulation.

A drawback of LES is that substantially more computational effort may be re-

quired colnpared to RANS. In the engine, for example, accmnulating ensemble-mean

statistics via LES requires computations through multit)le engine cycles. Other is-

sues include geometric complexity (moving piston and valves) and the relatively

inlmature state of LES for nlodeling complex engineering flows. It is the purpose

of the present research to advance LES on several of these fronts. First, we seek

to establish the limitations and resolution requirements of a particular munerical

methodology (Section 2). Second, we implement and evaluate the performance of

state-of-the-art subgrid-scale turbulence models on unstructured deforming meshes
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(Section 3). And third, we consider several other physical modeling issues that

arise in engines, including treatment of solid walls and inflow/outflow boundaries

(Section 4).

2. Numerical methodology

The high-order finite difference schemes and spectral methods that traditionally

have been used for DNS and LES are not suited to complex geometric configurations

with moving boundaries. On the other hand, the first-order time, second-order space

discretizations typically employed for engineering RANS computations (Amsden et

al. 1989, Haworth et al. 1990) are overly dissipative for LES. Here we require both

that the nunmrical methodology be compatible with the intended application of

in-cylinder flow and combustion, and that it be sufficiently accurate for meaningful

large-eddy simulation.

A novel discretization scheme called NO-UTOPIA (NOde-Centered Unstructured

TOpology, Parallel Implicit Advection) has been developed recently by O'Rourke

Satlota (1996a, 1996b). NO-UTOPIA is a variable explicit�implicit advection

scheme that differences along characteristic directions to yield formal second-order

accuracy in space and time, provided that the material-speed Courant number is

less than unity. It has been implemented using node-centered variables and an

edge-based data structure, allowing fully unstructured meshes.

For the present study, the equations solved are those of conservation of mass,

momentum, and enthalpy; the equation of state is that of an ideal gas with con-

stant specific heats. Computations are compressible, although the Mach number
is small for all cases considered here. To accommodate arbitrary mesh deforma-

tion, advective terms in the governing equations are written using velocities relative

to the moving grid. A pressure-based iterative solution procedure patterned after

SIMPLE is used.

The momentum equation for a control volume is obtained by integrating the

Navier-Stokes equations over an arbitrary volume V with bounding surface S that

is moving with velocity v_. Density, Cartesian velocity components, and pressure

are denoted by p, ui, and p, respectively; the (constant) laminar viscosity is PL.

Adopting Cartesian tensor notation with summation over repeated lower-case Ro-

man indices, the momentum equation has the form,

d = .

Here gi is a body force per unit mass. The effective stress r_fl'_i is the sum of a

viscous or laminar stress vg ji and the subgrid-scale stress rSGS ji,

reffj, = rLji -t- rSGSji , with rLj, = 2#LSji -- 2pL-_-T///)ji/3 • (2)

Here Sj_ is the rate-of-strain tensor, Sji = _/0____0,i+ °_"_/90,j/_-,and tiji is t'_ronecker_s

delta. No supplementary turbulence model transport equations are carried for the

subgrid-scale models considered here (Section 3).
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Care is needed in the specification of initial conditions. For each flow, we select

a reference velocity and length Uo and L0 (Section 4). Fluid properties 7 = %/c,,
(ratio of specific heats) and R (specific gas constant) are set to nominal values for

air. The Mach number based on Uo is Mo = Uo/co where c_ = 7RTo is the square

of the reference sound speed and To the reference temperature. Reference density

and pressure are p0 and P0, respectively. Laminar viscosity PL is set to match the

desired reference Reynolds number Re0. Remaining reference quantities and fluid
properties are specified as:

"y = 1.4 , R = 288.291 J/kg - K , M0 = 0.1 ,

p0 = 1.0 , p0 = (3'M02) -1 , /ZL = poUoLoReo 1 .
(3)

Initial nodal velocities and pressures are prescribed, and nodal temperatures are set

such that the initial entropy is uniform, T = To(p/po)(7-z)/"_.

3. Subgrid-scale models

The three models considered are of the Smagorinsky type. Here the influence of

unresolved (subgrid-scale) motions on the resolved scales is treated as an additional

viscosity, so that rSGS )i has a form identical to that of rL ji,

rSGS ji = 2/2sGsS)i --2pSGS W---Oji/3 .
Uxl

(4)

The subgrid-scale viscosity PSGS is taken to be proportional to a norm of the local

rate-of-strain IS I and to a filter width A,

PSGS = pC_/X2JS] , with IS I - 2(S,jS,j) 1/2 . (5)

The single model coefficient is C8. It is the specification of Cs and A that distin-
guishes the three models.

3.1 Constant-coefficient Smagorinsky model

The simplest model results from taking C_ to be a constant and A to be equal

to the mesh spacing. To accommodate non-uniform mesh spacing, A in Eq. (5) is
specified as,

A = V 1/3 , (6)

where V is the volume associated with a computational element.

Calibration with respect to benchmark turbulent flows has led modelers to adopt

different values of C_. For homogeneous isotropic decaying turbulence, the value

C_ = 0.172 is found to result in a good match with the measurements of Comte-

Bellot &: Corrsin (1971) (Section 4.1). For planar channel flow, a value of C_ = 0.12

yields better agreement with measurements and DNS data (Section 4.3). The non-

universality of C_ motivates the need for a more general model.
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3.2 Dynamic Smagorinsky model

Germano et al. (1991) proposed an approach for evaluating subgrid-scale model

coefficients from info^rmation c_ntained in the resolved fields. Two filter widths are

introduced, _ and _, where _ > _. Dependent variables filtered at scale A are

denoted by the overbar notation (7 while the hat notation 5 denotes filtering at

the larger scale. Formally, the first filter corresponds to an explicit filtering of the

governing equations at the scale _. In practice, the first filter is implicit in the

numerical method. That is, the quantity _i(x,t) denotes the computed velocity

delivered by the numerical method at position x and time t.

The second filter, or 'test filter,' corresponds to a hypothetical second filtering at

a larger scale. Thus ui(x__, t) represents the LES-computed velocity field filtered at

scale _. Stress tensors rji and Tji represent the subgrid-seale stresses for the two

filter widths, respectively: rji - pujui -- pUjUi , and Tji = pujui -- pujui. Here the

fluid density p can vary in time, but is nearly uniform in space (1o __wMath n_unber).

Filtering rji through the second filter yields the quantity _ji = pujui --puj_ti. Then

subtracting fji from Tji yields a second-order tensor Lji, which can be thought _°f

as the stresses resulting from turbulent motions at scales intermediate between A
A

and A:

Lji = rji - _ji = pujui - pujui • (7)

Equation (7) is the Germano identity.

In the Smagorinsky model, subgrid-scale stresses at both scales are modeled con-

sistently as,
A_ _ A

rji = 2pCs-_2l-S[Sji , and Tji = 2pCs A ]S]Sji , (8)

Equation (8) is substituted into Eq. (7) to yield,

^2^^

Lji 2pCsA [S[Sji --2--= - 2pC_A [SlSji. (9)

Under the assumption that C_ and _ are constants with respect to the second (test)

filtering operation,

Lj.=2oc.-s'( - isl"-ij.) =-2,c.-s'.j. (10)

Equation (10) defines the second-order tensor Mji which, like Lji, is directly com-

putable from the LES resolved velocity field.

The quantity C_A 2 is chosen in a manner that minimizes the error in satisfying

Eq. (10), ei, =- Lj_ + 2C_A2Mj_. Here we follow Lilly (1992) in minimizing this

error in a least-squares sense with the constraint that C_ 2 does not vary over

homogeneous directions to yield,

Cs-_2_ (LijMij) (11)
2(MktMkt) "
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The angled brackets ( ) represent an average over homogeneous directions.

The dynamic model offers several advantages compared to the constant-coefficient

model. Subgrid-scale viscosity increases locally in areas of low grid resolution in

response to the high energy found between the two filter scales (large Lji). And,

#SGS decreases to zero in case all scales of motion are fully resolved locally (Lji --* 0).

A second advantage of the model as formulated here is that the filter width itself

need not be explicitly specified. It is the ratio of the filter widths _x/A that

appears in Mij (Eq. 10). It is expected that the ratio of filter widths should be

more uniform than the filter width itself on nonuniform deforming meshes.

A fundamental limitation of the model as outlined here is that it requires at least

one direction of statistical homogeneity. We therefore consider a third variant of

the Smagorinsky model that addresses this shortcoming.

3.3 Lagrangian dynamic Smagorinsky model

Meneveau et al. (1996) proposed to accumulate the averages required in the

dynamic model over flow pathlines rather than over directions of statistical homo-

geneity. In this case, the error incurred by substituting the Smagorinsky model

(Eq. 8) into the Germano identity (Eq. 7) is minimized along fluid-particle trajec-

tories. The error to be minimized is the accumulated local squared error E along

the pathline followed by the fluid particle that is located at position x at time t:

E = ft_ooeij(z_(t'),t')eO(z(t'),t')W(t-t')dt', where z(t')= z__-ft t, _(z(tT'),t")dt" is

the trajectory followed by the fluid particle at times t t < t. The quantity W(t - t r)

is a weighting function that determines the relative importance of past events, and

the error eij is the difference between left- and right-hand sides of Eq. (10). As

in the previous formulation (Section 3.2), it is assumed that Cs_ _ does not vary

strongly over the scale of the test filter. Then the value of C_& 2 that minimizes the

error E is,

C-_2_ ILM
_MM ' (12)

where,

ZLM(__, t) = f_.'
oo

ZMM(2:, t) : it___
oo

LijMij( z_(t'), t), t')W( t - t')dt' ,

MoMo(z_(t'), t), t')W(t - t')dt' .

(13)

An expedient choice of weighting function is one that decays exponentially back-

wards in time, W(t - t') = T-lexp[-(t - t')/T], T being a memory or relaxation

time scale. This choice allows the integral quantities _LM and ZMM to be expressed

as solutions to transport-relaxation equations. Meneveau et al. {1996) observed

that high numerical accuracy is not needed in the solutions of these equations, and

adopted the expedient of updating nodal values of _LM and 2"MM by interpolating
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from surrounding nodes at the upstream position:

"+' ( )ZLM (a') = max 0 , a[LijMij]n+l(x__) -t- (1 - a)I_M(£ -- __n/kt) , and

Zn+lM M(,r_) = a[J_[ijl_/Iij]n+l( x ) nc (1 -- a)_._t M(X -- l nz_xt) ,

(14)

where a = (At�T")�(1 + At/T"). Here superscript n + 1 denotes quantities eval-

uated at the current time, superscript n quantities at the previous time, and At is

the computational time step. Trilinear interpolation is used to evaluate quantities

at the upstream position z - gAt from computed values at the surrounding nodes.

We adopt the relaxation time T selected by Meneveau et al. (1996),

T = O-A[ (2_2)3ZLMZMM ]-1/8 (15)

where the vahle of the model coefficient is 0 = 1.5. This choice for T tends to reduce

the memory time in regions of high strain (large MijMij) and in regions of large

nonlinear energy transfer (large LijMij). The memory time increases to reach back

further in time along the particle's trajectory in case LijMij remains negative over

a persistent period. Negative LijMij might otherwise result in negative subgrid-

scale viscosity, implying energy transfer from small to large scales and numerical

instability.

4. Flow configurations

In a reciprocating engine, all flow velocities scale with the mean piston speed,

which is proportional to the crankshaft rotational speed; length scales are inde-

pendent of engine speed. Thus the mean-flow Reynolds number Reb (based on

bore diameter and mean piston speed) and the turbulence Reynolds number Re l

(based on turbulence intensity and integral length scale) increase in proportion to

engine speed. At 2,000 r/rain, these are estimated to be Rob _ 36,000 and Ret

1,000, respectively. In-cylinder turbulence, particularly at low engine speeds, is a

low-to-moderate Reynolds number phenomenon.

The number of turbulence 'eddy-turnover' times available for the decay of induction-

generated turbulence in the engine is estimated to be greater than ten. Induction-

generated turbulence has largely decayed by the time of ignition: it is the breakdown

of the large-scale induction-generated flow structure that has the major influence on

near-TDC turbulence and flame propagation. During compression and expansion,

the in-cylinder flow is subjected to linear mean strains. The mean strain due to

piston motion is slow compared to turbulence time scales, but persists for a large

number of eddy-turnover times. These observations guide our choice of test cases
for LES.

4.1 Decay of homogeneous i_otropic turbulence

This canonical configuration is of relevance to the engine by virtue of the long

times available for turbulence decay between intake-valve closure and ignition.

Benchmark measurements were reported by Comte-Bellot & Corrsin (1971). There
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the temporal decay of homogeneous isotropic turbulence was approximated by grid-

generated turbulence in a wind tunnel.

Here we compare computed turbulence kinetic energy decay k = (_i_i)/2 and

three-dimensional energy spectra to the experimental data of Comte-Bellot & Corrsin

(1971). Turbulence was generated using a grid spacing of M = 5.08 cm in a uni-

form mean flow of velocity U_ = 10 m/s, yielding a Reynolds number of U_M/v

= 34,000. Data were reported at three downstream stations: U_t/M = 42, 98, and
171.

Computations are done on triply-periodic uniform cubic meshes of length 27r along

each edge. Scalings are such that the edge of the computational box 2rr corresponds

to a physical length of 0.55 m, and the computational reference velocity U0 = 1.0

corresponds to the physical velocity U_ = 10.0 m/s. Other scalings and parameters

are summarized in Eq. (3).

The initial velocity field is prescribed by a procedure similar to that used for

incompressible spectral simulations. We begin with a superposition of Fourier modes

having a prescribed energy spectrum but random phases; this is projected onto

the divergence-free space. The resulting field represents the flow upstream of the

first measurement station. It is advanced in time over several turbulence eddy

turnover times to adjust to compressibility and to build phase coherence. The

process is repeated with different initial fields until a satisfactory match is obtained

between the computed and measured energy spectrum at the first measurement

station U_t/M = 42.

Comparisons between model and measurement are made on the basis of filtered

quantities. Energy spectra are filtered based on our limited understanding of the

nature of the filtering implied by the numerical method. We assume that () corre-

sponds to a top-hat filter in physical space at the mesh spacing with trapezoidal-rule

integration.

Initial computations are for a mesh of 323 nodes. This has been the traditional

starting point for new numerical methodologies in LES, but is marginal for resolving

the physics of the flow. At the initial measurement station U_t/M = 42, the

computational box edge corresponds to between ten and twenty integral length

scales of the turbulence: fewer than three mesh points span an integral scale. By

the final measurement station UoJ/M = 171, the turbulence integral scale has

roughly doubled. The computational time step is prescribed such that material

Courant numbers are less than unity.

4.2 Linear strain of initially isotropic turbulence

Homogeneous strain of initially homogeneous isotropic turbulence has been a

second canonical configuration for analysis, modeling, and experiment. Here we

consider the linear expansion and the linear compression for their particular rele-

vance to the IC engine. Results are compared to rapid-distortion theory (RDT),

a linearized theory of turbulence that is appropriate in the limit where the mean

strain rate is large compared to an inverse turbulence eddy turnover time (Kassinos

& Reynolds 1994). Although IC engines appear to be far from the RDT limit, this

nonetheless provides a sound basis for model evaluation. This configuration also
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exercises the code's mesh deformation capability.

The behavior that we seek to capture is the distribution of energy among the three

normal-stress components. We monitor the evolution of the normalized anisotropy

tensor b,j as a function of the total strain C*,

bij = (-ffigj)/(g_-fft) - 6ij/3 , C* = exp[fIS'ld ] (16)

Here S* is the dominant eigenvalue of the modified rate-of-strain tensor Si*J, where

S_'. = Sij - Su6ij/3. In the absence of mean rotation, the evolution of b,j(C*)
_J

in the RDT limit for a non-solenoidal mean strain Sij is the same as the evolu-

tion of bij(C*) for the corresponding divergence-free rate-of-strain Si*j (Kassinos &

Reynolds 1994).

The linear expansion is the superposition of spherical (isotropic) expansion and

irrotational axisymmetric contraction. Experiments (see Kassinos & Reynohts 1994

for references) show that the anisotropy bij depends weakly on the magnitude of the

mean rate of strain. Thus even for slow linear expansions, the evolution of -bij(C*)

is expected to be similar to that predicted by RDT. The linear compression is the

saperposition of spherical compression and irrotational axisymmetric expansion. In

this case, experiments reveal that stronger anisotropy develops at slower mean rates

of strain.

Initial meshes and velocity fields are the same as those for decaying turbulence

simulations (Section 4.1). The mean strain rate is imposed by deforming the domain

in a manner that maintains a constant rate-of-strain Sa3 along the x3 coordinate

direction. The mesh deformation rate varies linearly fi'om zero at x3 = 0 to S:_3.La(t)

at is3 = L3(t), yielding exponential expansion or contraction of the mesh with time,

L3(t) = L3(O)" exp[S33t].

4.3 Planar channel flow

The planar channel flow adds the complexity of walls and a single statistically

nonhomogeneous direction. Computations are performed on a rectangular prism of

dimension L1 (streamwise) by L2 (normal to the wall) by La. Relevant dimensionless

parameters are Reynolds numbers based on the wall friction velocity ur, and on the

bulk velocity: Re,- - u,-6/u, and ReB = UB6/u where UB = f:_(-ffl(X2))dz2/L2,

and 6 is the channel half-width. Here angled brackets ( ) denote averages over

planes parallel to walls.

Results are computed for a low Reynolds number of Re_ = 180 (ReB ,_ 2,800).

The computational domain is 4rr6 by 26 by 4rr6/3. The initial mesh of 33 x 65

x 33 nodes is comparable to that adopted by earlier researchers for this Reynolds

number, although higher-order numerical methods have been used in most previous

work (e.g., Piomelli 1993). Mesh spacing is uniform in xa and x3 and follows a

tanh distribution in x2. Grid spacing varies from a minimum of Ay + = 0.87 at the

wall to a maximum of Ay + = 11.7 at the channel centerline, where the + notation

denotes standard wall-units scaling (y+ - yu_/u). Computations are periodic in .rl

and .ra, with no-slip boundaries at x2 = 0 and x2 = L2.
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FIGURE 1. Decay of filtered turbulence kinetic energy for homogeneous isotropic

decaying turbulence. Fiher corresponds to a top-hat ill physical space oll a 323
uniform mesh with trapezoidal-rule integration. Symbols are measurements of

Comte-Bellot & Corrsin (1971): o . Lines are computations: .... no subgrid-scale

model; -----constant-coefficient Smagorinsky model with C,, = 0.172; --dy-
namic Smagorinsky model.

Periodicity in the streamwise direction is maintained by imposing a streamwise

body force gl (Eq. 1) consistent with the desired Re _. A global fl)rce balance in the
Xl direction yields,

gl = 2L21(vRe_/b) 2 . (17)

Fluid viscosity is set to maintain the desired bulk Reynolds number ReB. "velocity

and length scales are U0 = U/3 and L0 = & remaining parameters are set accord-

ing to Eq. (3). The flow is allowed to develop for about 20 flow-through times

td_Ub/L1 ,_ 20 (td_tz_/b -_ 15). Profiles of mean velocity, Reynolds stresses, and

other statistics as flmct.ions of x2 then are accunmlated by averaging over planes

parallel to walls and ow,r time using averaging times t_,g of at least t_,,gu_/6 = 5.

Computed results are compared to DNS results of Kim et aI. (1987) at the same
RC- r ,

4.4 Azi._ymmetric piaton-cylinder aaaembly

The target configuration for establishing the feasibility of in-cylinder LES is the

simplified piston-cylinder assembly of Morse et aI. (1978). There flow enters a

pancake (flat head and piston) chamber through a central pipe of inside diameter

18.75 mm and length 1.8 m. The piston is driven in simple harmonic motion at a

speed of 200 r/rain through a 60-mm stroke; there is no compression. Bore diame-

ter is 75-ram bore, and top-dead-center clearance height is 30-mm. Laser-Doppler

anemometry has been used to obtain ensemble-mean (phase-averaged) radial pro-

files of mean and rms axial velocity at 10-ram axial increments starting at the
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FIGURE 2. Evolution of filtered three-dimensional energy spectra for homogeneous

isotropic decaying turbulence. The filter is a top-hat of width 2rr/16 in physical

space with trapezoidal-rule integration. Symbols are experimental measurements of

Comte-Bellot &: Corrsin (1971): • U_t/M = 42; x U_t/M = 98; + Uoot/M = 171.

Lines are computations for the constant-coefficient Smagorinsky model with Cs =

0.172 on 323 meshes: -- Uo_t/M = 42; .... U_t/M = 98; ----- UoJ/M = 171.

head for crank positions of 36 ° , 90 ° , 144 ° , and 270 ° after top-dead-center. This

flow can be thought of as an extension of the classic statistically stationary sudden

expansion/contraction to a statistically periodic case.

Several pieces of information are sought from these computations. First, we

can evaluate the performance of subgrid-scale turbulence models in a configuration

approaching that of an engine on a deforming unstructured mesh. Second, we will

build experience with explicit phase- (ensemble-) averaging compared to spatial

filtering and traditional RANS modeling. Third, we can establish mesh resolution

requirements, particularly in the vicinity of walls. This includes a determination of

the need for explicit wall models beyond that provided by the subgrid-scale model.

And fourth, we will explore the nature of inflow forcing required to generate realistic

in-cylinder flow variability.

5. Results

All displayed results represent the resolved motion delivered by the numerical

method in.combination with the specified subgrid-scale model. These are the ()-

filtered quantities as defined in Section 3. No attempt has been made to add explicit

subgrid-scale contributions to the stresses.

5.1 Decay of homogeneous isotropic turbulence

The effect of filtering on the fraction of resolved turbulence kinetic energy in the

experiments of Comte-Bellot &: Corrsin (1971) has been computed. For the filtering
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FIGURE 3. Evolution of the normalized anisotropy tensor b,j as a function of

total strain C* for the linear expansion. Open symbols are RDT results (Kassinos

& Reynolds 1994): o RDT, bll; _" RDT, b22; Q RDT, b33. Lines are computations

for the constant-coefficient Smagorinsky model with Cs = 0.172 on 32 a meshes:

-- Saa" k/_ _ 4, b11; ........ S3a" k/g _ 4, b22; .... $33" k/g ,_ 4, b33; --'-- $33'

_/_" _, 8, bll ; ----- $33 -_'/_ ,_ 8, b22 ; _ $33 • _'/_ _,_ 8, b33. (Results for the

lower rate-of-strain $33 are indistinguishable from those at the higher S33.)

assumed to be closest to our numerical method (top-hat filter with trapezoidal-

rule integration) only about 45% of the energy is resolved at the first measurement
station on the 323 mesh.

The decay of filtered turbulence kinetic energy versus time for the 323 mesh is dis-

played in Figure 1. With no subgrid-scale model, there already is substantial decay

resulting mainly from numerical dissipation. Constant-coefficient Smagorinsky adds

sufficient additional dissipation to yield good agreement with measurements, using

the standard value of the model coefficient (Cs = 0.172). The dynamic Smagorinsky

model yields similar results, returning a value of Cs _ 0.162, close to the standard
value•

Filtered three-dimensional energy spectra are plotted in Figure 2. There is a

pile-up of energy at wave numbers just beyond the peak of the spectrum in the

computations. Thus while we are able to match the energy decay rate on this coarse

mesh, the dynamics of the system are not fully captured. This is not surprising in

a computation where less than half of the energy is resolved.

5.2 Linear strain of initially isotropic turbulence

Evolution of the normalized anisotropy tensor as a function of total strain is given

in Figs. 3 and 4. Results are presented for two different values of Saa • k/_ to show

the influence of mean rate-of-strain. All numerical results are for a 323 mesh using

the constant-coefficient Smagorinsky model (C, = 0.172). RDT data are shown for
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FIGURE 4. Evolution of the normalized anisotropy tensor bij as a function of total

strain C* for the linear compression. Open symbols are RDT results (Kassinos &

Reynolds 1994): o RDT, b11; " RDT, b_2; n RDT, b33. Lines are computations

for the constant-coefficient Smagorinsky model with Cs = 0.172 on 323 meshes:

-- $33 • k/_ _ -4, bl,; ........ $33 • k/_ _ -4, b22; .... S33 • k/_ _ -4, 533 ;

--'-- 833 " _/_ _ --8, bll; ----- $33 • k/g _ -8, b22; +++++ $33 • k/g _ -8, b33.

comparison.

For the linear expansion, computations are in good quantitative agreement with

RDT and are insensitive to the applied mean rate-of-strain (Fig. 3). This is consis-

tent with experimental trends reviewed by Kassinos & Reynolds (1994).

Results for the linear compression warrant further discussion (Fig. 4). In this

case computed results are closer to RDT for the slower mean rate-of-strain, and the

degree of anisotropy increases with increasing mean rate-of-strain. This is contrary

to experimental trends, which show increasing anisotropy at slower rates of strain

(Kassinos & Reynolds 1994).

The Reynolds-averaged turbulence stress transport equation for homogeneous

turbulence subjected to a uniform mean strain rate is derived by standard proce-

dures,

dt
+ T_I + T_t - ekt • (18)

The prime notation emphasizes that there is non-zero mean flow, u'i -- ui - (ui).

Here the first two terms on the right-hand side represent the rate of production,

Tkl and T_t are the 'rapid' and 'slow' pressure-rates-of-strain, respectively, and -_x.t

is the viscous dissipation. In the limit of rapid distortion, gkt and Tkt are negligible.

For the present linear mean strains, O(_i)/Oxj = $335i3_j3. Thus all turbulence

production goes directly into (g_2} and is redistributed to the other two components
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FIGURE 5. Streamwise mean velocity profiles normalized by the bulk velocity

UB for the planar channel flow at ReT = 180. Symbols ( x ) are the DNS data of

Kim et al. (1987). Lines are computations on the 33×65×33 mesh: .... constant-

coefficient Smagorinsky, C_ = 0.172; ----- dynamic Smagorinsky; _ Lagrangian
dynamic Smagorinsky.

(_'12) and (fi-_2) via the pressure-rate-of-strain terms. For the low-resolution LES

computations of linear compression, the effective rapid pressure-rate-of-strain model

does not redistribute sufficient energy from the 'direct' production component to

the other two. Moreover, the effective slow pressure-rate-of-strain model responds
incorrectly to a decrease in the mean rate-of-strain.

5.3 Planar channel flow

Mean velocity profiles from the dynamic Smagorinsky and Lagrangian dynamic

Smagorinsky models are very similar to one another, and show better agreement

with DNS than the constant-coefficient model (Fig. 5). All three models deviate

from DNS in the logarithmic region (y+ > 10). Ratios of centerline mean velocity

to bulk velocity (_(y = _5))/UB are 1.22 for constant-coefficient Smagorinsky, 1.15

for dynamic Smagorinsky, 1.15 for Lagrangian dynamic Smagorinsky, and 1.16 for

the DNS of Kim et al. (1987)•

Both dynamic models effectively 'turn down' the subgrid-scale viscosity in the

vicinity of the wall. The mesh spacing _ decreases close to the wall, as does

the model coefficient C_. The latter behavior is demonstrated in Fig. 6. There

computed profiles of C_/2 extracted from the dynamic model and the Lagrangian

dynamic model are shown. For the former model, the standard value of 0.1 is

recovered in the center of the flow, with a rapid drop-off to zero at the walls. The

Lagrangian dynamic model behaves similarly out to a distance of about y+ _, 40,

but levels off to a lower value of -_s _ 0.06 at the centerline.

Computed Reynolds-stress profiles from the Lagrangian dynamic model are given
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FIGURE 6. Computed profiles of C 1/2 adjacent to the lower wall for tile planar

channel flow at Rer = 180. Symbols (e, × , + ) are planar-averaged profiles from the

dynamic Smagorinsky model at three instants of time. Lines ( , , )

are planar-averaged profiles from the Lagrangian dynamic Smagorinsky model at
three instants of time.

in Figs. 7 and 8. Results from the dynamic model are similar, while the constant-

coefficient model yields somewhat poorer profiles (not shown). This is consistent

with our findings from the mean velocity profiles of Fig. 5. Normal stress com-

ponents display qualitatively correct behavior (Fig. 7), but there are significant

quantitative departures from the DNS data. In particular, on this coarse mesh, all

models tend to leave too much energy in the direct production component (_2)

at the expense of (_2) and (_a2). The value of the peak shear stress is computed

reasonably well, although the LES profile is shifted outward from the wall compared

to the DNS data (Fig. 8). These findings suggests that the present mesh resolution

is marginal for computing second-order statistics, especially in the log-law region.

5.4 Axisymmetric piston-cylinder assembly

Computations are in progress at the time of this writing. Quantitative compar-

isons with measurements of Morse et al. (1978) are forthcoming.

6. Discussion and conclusions

This research has explored a candidate numerical methodology and subgrid-scale

stress models for LES of flow in reciprocating IC engines. The present results

have been obtained using coarse meshes that are representative of minimal mesh

requirements for spectral LES. Generally reasonable evolution of first and second

moments has been found nevertheless. This is an encouraging finding, given the

low formal accuracy of the numerics. Based on these early results, it is anticipated

that acceptable accuracy can be obtained using practical mesh densities.
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FIGURE 7. Turbulence intensities normalized by the wall friction velocity u,- for the

planar channel flow at Re_ = 180. Symbols are the DNS data of Kim et al. (1987):

• streamwise (xl) component; × wall-normal (x2) component; + cross-stream (x3)

component. Lines are computations using the Lagrangian dynamic Smagorinsky

model (resolved portion): -- streamwise (xl) component; wall-normal

(x2) component; --- -- cross-stream (x3) component.

Specific deficiencies have been attributed to inadequate spatial resolution. These

include the energy spectrum decay for isotropic turbulence and insumcient energy

transfer from the 'direct' production component for linear compression and planar

channel flow. The two dynamic models have demonstrated an advantage compared

to the constant-coefficient model in the planar channel flow. No specific deficiencies

of the dynamic subgrid-scale models have been identified. In some cases, model

results are not much different than those obtained in the absence of any explicit

subgrid-scale model. This is consistent with earlier LES work for coarse meshes

and low-order numerical methods. It remains to establish that these deficiencies

can be overcome through mesh refinement, and to quantify resolution requirements

for a specified level of fidelity to experiment or to benchmark computations. Short

of explicitly filtering tile governing equations at a scale much larger than the mesh

spacing, it will remain difficult to isolate numerical inaccuracy from subgrid-scale

model performance in LES.

Beyond spatial resolution, the most pressing outstanding issue is tile lack of an-

alytic characterization of the filtering implied by non-spectral numerical methods:

what is ui? While it is straightforward to analyze and implement a variety of filters

in spectral methods (e.g., spectral cutoff, spatial top-hat, spatial/spectral Gaus-

sian), there has been little analysis to guide the implementation of filters implicit in
finite-difference, finite-volume, or finite-element schemes on unstructured meshes.

Our experience with the initial spectrum for decaying turbulence shows that the

present discretization scheme affects all wavenumbers to some extent. The same has
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FIGURE 8. Turbulence shear stress normalized by the square of the wall friction

velocity for the planar channel flow at Re_ = 180. Symbols (o) are the DNS data of

Kim et al. (1987). Lines (._) are computations using the Lagrangian dynamic

Smagorinsky model (resolved portion).

been found for other non-spectral methods that are being explored for unstructured

LES (Jansen 1995).

Other outstanding issues for in-cylinder LES include wall treatment and inflow

boundary conditions. Piomelli (1993) has shown that accurate LES results can

be obtained using the dynamic model at high Reynolds numbers without further

explicit wall modeling. The challenge at inflow boundaries is to establish the nature

of forcing needed to yield in-cylinder velocity statistics representative of measured

'cyclic variability.' A final determination of suitability awaits the results of finer-

mesh simulations for the three canonical configurations, and multiple-cycle results

for the axisymmetric piston-cylinder assembly•
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